欧洲温带地区新石器时代的奶业革命

The Milking Revolution in Temperate Neolithic Europe

理查德·艾夫希德 Richard Evershed
(英国布里斯托大学 University of Bristol)

新石器时代早期农民引入和扩散了以反刍动物为基础的农业,这对评估欧洲中石器-新石器转变意义重大。人类生存策略中这一革命性转变彻底改变了欧洲史前文化、生物和经济,几乎在全世界范围内构成了现代生活的基础。至关重要的是,这些变化是全球范围内乳制品经济广泛传播和欧洲乳糖耐受性(LP)革命的基础。数十亿欧元的现代乳品经济是欧洲史前时期这一关键阶段所做出的人为生物改革的直接结果。因此,我们的研究集中在这些早期农业社群生活中意义最深远的一个方面,即家养动物在不断发展的自给经济和定居农业中的突然作用,特别要考虑牛成为温带欧洲新石器时代农民家养动物这一因素。

畜牧业是生存的基石,对考古遗址发现的动物遗存进行最先进的动物考古和化学及同位素的研究能够对史前养殖、草料和土地利用情况提供前所未有的见解。环境可能在驯养动物的选择上起到了基础性的作用。在新石器时代早期,由于绵羊和山羊的生理机能能够忍受半干旱和灌木丛环境,因此它们主要出现在南部纬度地带,而牛则主要出现在北欧和中欧。牛是中北欧文化的重要组成部分,可能促进了新石器时代早期文化的迅速扩张,例如该地区公元前六千纪的Linearbandkeramik (LBK)文化。

我们基于对来自动物考古遗存的牙齿萌出、磨损和替换阶段观察得出的死亡率数据来概述动物的屠宰管理状况,这又可以反过来用于研究动物饲养状况。乳业的特征是宰杀掉雄性幼崽和老年个体。死亡率概况不能反映性别状况,但是通过统计幼崽和成年个体的出现频率我们可以推断奶的利用状况。我们已经证明了新石器早期陶器文化Cardial/Impressa (ICW)和LBK的社群主要将反刍动物用于产奶。地中海西北部社群主要用山羊产奶,而新石器时代早期LBK中部和北部社群的主要产奶动物是奶牛。与山羊相比,奶牛成熟较慢,因此需要持续的草料来源以便动物越冬。

保证奶牛的牧草和冬季草料库存将是一整年的活动,这对内陆地区的聚落有巨大的影响。温带地区的自然景观主要是森林,新石器时代早期的社区主要是利用自然开拓或人工清理掉森林形成。牧民可能集中收集森林中的干草而用于整个冬季月份喂养牲畜。由于在考古中很少发现叶类遗存,因此在史前时代确定草和叶的消费尤其困难。通过反刍动物的牙釉质、牙本质和骨骼胶原蛋白的同位素分析可以获取饮食指标,可以用来确定史前养殖、草料种类和土地利用策略。森林冠层的密度会影响到13C/12C比值,这可以记录在身体组织中,比如那些以草叶为食的反刍动物的牙本质、牙釉质和骨胶原。本项目研发了一种新的基于牙本质氨基酸中的氢同位素的单体稳定同位素方法,该方法已经被用于鉴定以森林资源为草料来源的喂养状况,本方法成功的关键在于木质素生物合成中的氨基酸差异分馏,这种氨基酸在木质素高低不同的植物中存在着系统差异。牛臼齿的增量采样和稳定同位素分析对评估动物饲料的季节性变化提供了一个多重稳定同位素框架,这涉及到森林管理和树叶喂养的程度,以及可以估计生育季节的长度。

因此,我们已经有了冬天人为使用草叶喂养的最早证据。值得注意的是,生育季节大概持续4-5个月,表明了对牲畜育种有高度控制以保证冬季能有好的奶源供应。检视死亡率数据和稳定同位素数据表明LBK社群大力投资于牛群饲养,冬季持续不断的草料供应将会影响到社会组织,可能刺激了新石器时代欧洲中部地区与牛有关的象征符号的出现。

尽管肉和奶是畜牧业的主要产品,但它们的脂肪也是人类饮食的重要组成部分,我们的祖先也有相应策略保证其稳定供应。对动物躯体脂肪的利用模式最直接的证据来源于动物骨骼的研究。我们对LBK文化的工作代表了在骨骼脂肪加工处理方面有史以来最全面的研究。我们分析了过去人群是怎么集中利用动物骨骼的脂肪资源,通过不同骨折和骨碎片模型来获取骨髓和骨脂的利用证据。随着水分流失和胶原蛋白的成岩作用的程度,骨折具有不同的特征,使得我们能够从由践踏、再沉积和上下扰动,包括发掘损坏导致的沉积后埋藏骨折中区分出为了获取骨髓的人为骨折。基于这些发现,我们认为骨折可以用于判断动物残骸加工、垃圾堆积和考古遗址的形成。

重要的是,骨脂肪开采提供了一个重要的饮食需求指标。对骨髓和骨脂不同程度的加工可能是对不同程度饮食压力的响应,并留下不同的考古特征。骨髓加工需要分裂开新鲜长骨以获取骨髓腔骨髓,而骨脂的提前需要大量粉碎骨骼并将松质骨进行烹煮以获取油脂。因此脂肪的利用模式及其强度可能与饮食压力或尤其缺乏其它脂肪来源十分契合。我们在NeoMilk项目中进行该研究的目的是评估动物骨脂对饮食的贡献,尤其是考虑到可能存在的乳业活动,这是脂肪的另一个来源。乳业提供了丰富的可存储的脂肪来源,所以随着乳制品使用量的增加,对骨脂的大量开采可能会减少。这是需要我们验证的假设。

我们的研究表明并不是在每个遗址都有大规模提取骨脂的活动。该过程往往和狩猎采集群体很难获取大规模碳水化合物和丰富的脂肪相关,对于有作物和家养动物的LBK文化农民来说油脂可能并不是营养必须品。松质骨的碎裂证据都是非集中和孤立的,少数几例类似的碎骨例子更多可能是与各种各样的炖菜有关。另一方面,骨髓加工则存在于每一个遗址,但是新鲜骨骼产生的骨裂(表明骨髓加工)比例在各个遗址变化很大。我们的研究表明新鲜骨骼产生的骨裂比例和产奶的反刍动物(奶牛、绵羊和山羊)负相关,这一证据可能表明了那些具有较高奶制品生产能力的遗址对骨脂的依赖较少。

为获取骨髓导致的骨裂和后沉积导致的骨裂比例在遗址内部不同背景中差异也很大。这些背景中的不同骨折比例表明了动物残骸不同的加工情况和遗址本身的埋藏历史。在快速堆积和埋藏之前,伴随着对骨髓骨的炙烤,我们可以鉴别出这可能代表了宴享事件。其它的考古学特征显示出了后沉积破裂和由长期使用,二次堆积以及对旧物件的再切割导致的破碎状况。这些遗址内部的差异显示了考古活动的空间差异,也帮助我们将遗址作为一个整体去理解,并超越了纯粹的动物考古问题。这些研究突出了该类型动物考古研究的重要性和广泛适用性。我们的方法论允许一系列人为导致的断裂和后天埋藏扰动导致的破碎存在,这可以被用来反映遗址形成过程,该过程与考古遗址中所有人工遗物都息息相关。这对于那些像动物骨骼一样有时间敏感诊断特征但是不会破碎的遗物作用尤其巨大。这种类型的动物考古学研究可以并且已经用于不同时段的多个遗址中,引起了饮食和生存压力、埋藏学和遗址形成过程的激烈讨论。

总之,我们的中心假设“乳业的兴起降低了其它低效获取动物脂肪方式的需求”是可成立的,现在我们将这些结果与相同遗址中的乳业脂质残留证据相关联起来。

化学分析方法的出现使得来自于考古环境中的模糊不可见的有机物能够被检测和识别,这在时间和空间尺度上回答迄今难以解决的考古学问题意义重大。这种研究主要的分析目标是无釉陶容器中广泛保存吸收的脂质残留物。这些脂质来源于在这些容器中储存和加工的物品。它们来源于单次使用或者该容器生命史上所有烹饪事件的逐渐集聚。残留物分析适用于刚出土的陶器和博物馆藏品。高灵敏度的仪器检测方法比如气相色谱和质谱法可以检测和鉴定大量的化合物。使用离子检测方法可以达到超痕量灵敏度,比如用于检测水生资源开发的特定脂质标志物。气相色谱-燃烧同位素比值质谱仪在20世纪90年代出现,使得从各个生物标志物结构中获取稳定同位素信息成为可能,为考古学中有机残留分析的应用开辟了一系列新的途径。使用有机残留物分析可以在史前陶容器中检测一系列物品,比如陆生动物脂肪(动物体脂和奶脂),水生动物脂肪,植物油和蜡,树脂和蜂蜡。该项目的一项重大创新是对单个脂质的高精度放射性碳(14C)测年,尤其是通常在陶器中发现的来自于动物的脂肪酸。

我们运用该方法进行了有史以来最大规模的陶器有机残留物分析。我们对来自于LBK文化聚落的5000个样本进行了检测,这些采样的聚落覆盖了这个史前重要文化的全部分布范围,西起大西洋,北到波罗的海,东至黑海,在南部到达了北纬44度的萨瓦河和多瑙河下游。因此来自于所有生态区和环境变体(例如波兰低地和高地遗址)的LBK遗址陶器都有采样。最近的研究表明LBK文化在公元前6000年初就已经出现。早形成阶段的发现主要分布在历史上的外多瑙地区(Transdanubia)西北部,包括现代的匈牙利、奥地利和斯洛伐克的一部分。LBK文化在早期阶段从此处向西扩张,大约在公元前5500年到达莱茵河流域,大约在同一时间,北部和东北部到达了维斯瓦河上游支流地区。下一阶段,即所谓的“中”LBK阶段,LBK文化进一步扩张,在公元前5300年之后分布范围达到最大。接下来是所谓的LBK“晚期”和“末期”文化,从公元前5150年开始形成许多区域性集团。到公元前4900年时,最晚的LBK陶器(sensu stricto)也已经消失不见,这些发展阶段很好地体现在了陶器装饰和陶器风格演变上,给予了我们一个很好的年代学指标框架。

NeoMilk项目的陶器样本涵盖了LBK文化各个区域的所有年代阶段以研究动物利用的年代趋势。LBK文化聚落陶器组合非常单一,除了一些半球形的杯子,瓶子和双耳罐之外,80%的陶容器是“烹饪陶罐”,它们往往都有装饰。所有陶器种类的碎片在抽样时都有所涉及。到目前为止,大部分LBK陶片都来自于欧洲发掘的数千个聚落点,尤其是典型的LBK长屋旁的椭圆形灰坑。这种灰坑最初被挖掘用来为建设房屋墙体提供粘土,在房屋使用过程中被用作垃圾坑,从而使得我们有机会比较房屋之间的区别以及聚落和区域之间的差异。

来自于50多个考古遗址的大约5000个陶片样本的残留物分析结果使得我们可以从遗址、区域以及大陆层面上获取欧洲中部早期农业社区动物开发利用的时间和地域趋势。结果发现在整个LBK文化分布范围内,乳制品和非乳制品活动存在着很大程度的差异。显然,一些早期的农业社区依赖奶和奶制品,另外一些社区主要从动物躯体,骨髓和油脂中提取膳食脂肪。将一些奶转化为奶酪的证据是在一些特定容器中检测到奶残留物,这种容器穿有毫米尺寸的孔洞,和现代正在使用的及民族志记录中的奶酪过滤器十分相似。奶酪的生产将减少其它奶制品的生产并在一整年保证其奶制品的营养价值。

总之,NeoMilk项目整合了最先进的方法,为LBK文化社区管理动物、处理和消费其产品的方式提供了新的定性和定量的证据,以及在整个欧洲时空范围内是如何变化的。陶器中有机残留物的分子和稳定同位素分析为乳制品加工和消费提供了一个关键指标。该项目的一个主要优势是将动物证据与有机残留物证据互证,建立了在容器里加工动物产品和管理、屠宰动物方式之间的重要联系。这些新的发现被汇集,并与新的测年、古环境和考古信息相结合,以鉴别在LBK文化整个时空范围内对动物管理和开发模式变化的主要影响。NeoMilk项目的数据整合工作是测试与史前环境有关的地理和生态模型,来定义LBK文化期间对畜牧业的控制。最后的关键一步是通过目前正在进行的aDNA研究,在史前人群中绘制出乳制品大量出现的LP等位基因分布图。

The introduction and spread of ruminant animal-based agriculture by early Neolithic farmers had fundamental implications for modelling of the Mesolithic-Neolithic transition in Europe. This revolutionary shift in human subsistence strategy completely reshaped prehistoric European culture, biology and economy, in ways that underlie modern life virtually worldwide. Critically, these changes underpin the widespread dissemination of dairy economies globally, and the evolution of Lactase Persistence (LP) in Europeans. The multi-billion Euro modern dairy economy is a direct consequence of human-induced biological reformulations made in this critical phase of European prehistory. Hence, our research focusses on one of the most profound dimensions of the lives of these early farming communities, namely the emergent role of domesticated animals in their evolving subsistence economies and settlement cultures, particularly the factors that underlie cattle becoming the domesticate of choice amongst temperate European Neolithic farmers.

Animal husbandry is the cornerstone of subsistence practices and state-of-the-art archaeozoological and chemical and isotopic analyses of faunal remains recovered at archaeological sites can provide hitherto unattainable insights into the prehistoric husbandry, foddering and land-use practices. The environment likely played a fundamental role in influencing the choice of domesticated animal. In the early Neolithic sheep and goat are more predominant in southern latitudes due to their physiological capacity to withstand semi-arid and scrub environments, whereas cattle prevailed in the Northern and central Europe. Cattle were an important component of Central and Northern culture and likely contributed to the rapid expansion of early Neolithic cultures, such as the Linearbandkeramik (LBK) across this region in the sixth millennium BC.

We have used mortality data and profiles based on observations of dental eruption, wear and replacement stages from archaeozoological remains to characterise animal slaughter management, which in turn have been used to study husbandry practices. Dairy husbandry is characterised by the slaughtered of male infants and mature females. Mortality profiles cannot be sexed but by statistically examining the frequency of infant and mature adult classes we can infer milk exploitation. We have shown that ruminants were managed for milk by communities associated with early Neolithic ceramic cultures of Cardial/Impressa (ICW) and LBK. North-Western Mediterranean ICW communities managed caprines for milk, whereas cattle were the primary dairy animals in the Central and Northern early Neolithic LBK communities. Compared to caprines, cattle are slow to mature and so maintenance of animals to maturity requires continuous organisation of fodder resources for successful over-wintering.

Maintaining pasture and adequate winter fodder stocks for cattle would have been a year-round activity, which would have had significant impact on settlement hinterlands. The landscapes of temperate latitudes were naturally forested with early Neolithic communities exploiting natural openings or those formed anthropogenically through clearances. Leafy hay from the forests would have been intensively collected, and used by herders throughout the winter months to maintain their stock. Identification of leafy hay consumption in prehistory is especially difficult since leafy remains are rarely found in the archaeological record. New stable isotopic methods for recovering dietary signals from ruminant tooth enamel, dentine and bone collagen were used to determine the modalities of prehistoric husbandry, foddering and land-use practices. The density of forest canopy can have an impact on the ratios of 13C/12C, which can be recorded in the body tissues, such as dentine, enamel and bone collagen of ruminants pastured within or provisioned with leafy hay. A new compound-specific stable isotope approach based on nitrogen isotopes in dentine amino acids developed during the project has been used to identify forest resource foddering. The success of this approach rests on the differential fractionations of amino acids involved in lignin biosynthesis, which varies systematically in high and low lignin plants. Incremental sampling and stable isotope analysis of cattle molars provides a multi-proxy stable isotope framework for assessing seasonal variations in animal diets relating to the degree of forestation and leafy foddering, and estimates of the length of the birth season.

As a result we now have the earliest evidence for the deliberate use of leafy hay during winter. Significantly, the estimated length of birth season was found to be 4-5 months, indicating a high degree of control over herd breeding to ensure that milk was available well into the winter period. The interrogation of mortality data and stable isotopes suggests that LBK communities invested considerably in cattle herds and husbandry and provisioning of a continuous supply of winter fodder would have influenced social organisation, potentially providing the stimulus for the emergence of the symbolism relating to cattle in Neolithic central Europe.

While meat and milk are obvious products of animal husbandry their fats would have been a vital component of the human diet and our ancestors would have developed strategies to secure a regular supply. The most direct evidence for modes of carcass fat exploitation comes from studies of animal bone. Our work on the LBK culture represents the most comprehensive study into bone fat processing practices ever undertaken. We analysed how intensively past peoples were utilising fat resources derived from animal bone, identifying evidence of bone marrow and grease exploitation through different patterns of bone fracture and fragmentation. Bone fractures with different characteristics dependent upon the level of moisture loss and collagen diagenesis over time, allowing us to separate human-induced fractures, to access marrow, from post-deposition taphonomic fractures caused by trampling, re-deposition, and context disturbance, including excavation damage. Based on these findings we argue that bone fracture can therefore be used to characterise carcass processing, refuse deposition practices and archaeological site formation.

Critically, bone fat exploitation provides an important indicator of dietary demand. Different intensities of bone marrow and grease processing may be undertaken in response to different levels of dietary stress, and leave different archaeological signatures. Bone marrow processing requires the splitting of fresh long bones to access the marrow cavity, whereas grease extraction requires intensive comminution and boiling of cancellous bone render out grease. Thus, the mode of fat exploitation and its intensity may correlate well to dietary stress or a particular lack of other fat sources.  Our aim in undertaking this analysis for the NeoMilk project was to assess the contribution of animal bone fats to diet, particularly in light of possible dairying activity, which would provide an alternate source of fat. Dairying provides a rich source of storable fat, so as use of dairy products increased, the need for extensive bone fat exploitation might decrease. This is the specific hypothesis we set out to test.

Our findings suggest that bone grease processing was not practiced intensively on any site. This process, usually associated with hunter-gatherer groups with limited access to large amounts of carbohydrates or rich sources of fat, was likely not nutritionally necessary for LBK farmers with access to domesticated crops and animals. Any evidence for fragmentation of cancellous bone was usually non-intensive and isolated, with limited instances of such fragmentation more likely related to enriching stews. Bone marrow processing on the other hand was present at all sites, but proportions of marrow bones fractured whilst still fresh (peri-mortem), suggestive of marrow extraction, varied between sites. Our research shows a negative correlation between the proportion of bones fractured while fresh and the proportion of milk-producing ruminant animals (cattle, sheep and goats) present. This evidence could crucially imply that sites that had a higher capacity to produce dairy products, relied less on bone fat as a resource.

The proportions of fracture for marrow and post-depositional fracture also varied within sites, between different context types. Varying fracture proportions in these contexts suggest different carcass processing practices and taphonomic histories within a site itself. We have been able to identify contexts that may represent feasting events, with marrow bones roasted, before rapid deposition and burial. Other archaeological features displayed post-depositional fracture and fragmentation related to prolonged use, re-deposition of material accumulated elsewhere, and re-cutting of old contexts. These intra-site differences show spatial variation in archaeological activities that contribute to our understanding of the site as a whole, and extend beyond purely zooarchaeological questions. These investigations highlight the importance and wide applicability of this type of zooarchaeological analysis. Our methodology allows the representation of a sequence of human-induced fracture and fragmentation followed by later taphonomic disturbances, which can be used to reflect site formation processes that have affected all artefacts from archaeological sites. This is particularly useful for artefacts that do not fracture with the same time-sensitive diagnostic features as animal bone. This type of zooarchaeological analysis can and has been applied to sites of many different periods, informing archaeological discussions of diet and subsistence stress, taphonomy and site formation processes.

In summary, our central hypothesis that the rise of dairying reduced the need for other less efficient forms animal fat exploitation appears to be valid and we are now relating these results to the lipid residue evidence for dairy production at the same sites.

The advent of analytical chemical methods, which allow amorphous and invisible organic materials from archaeological contexts to be detected and identified is contributing significantly to answering hitherto intractable archaeological questions, across both temporal and spatial scales. Such analyses target absorbed lipid residues preserved widely in unglazed ceramic vessels. These lipids originate from products stored and/or processed in vessels. They derive either from a single use or an accumulation of cooking events over a vessel’s life history. Lipid residue analysis is applicable to both freshly excavated sherds and those from museum collections. The high sensitivities of instrumental methods, such as gas chromatography and mass spectrometry allow trace amounts of compounds to be detected and identified. Ultra-trace sensitivities can be achieved using selected ion monitoring methods e. g. for the detection of specific lipid biomarkers of aquatic resource exploitation. The advent of gas chromatography-combustion isotope ratio mass spectrometry in the 1990s introduced the possibility of accessing stable isotope information from individual biomarker structures, opening a range of new avenues for the application of organic residue analysis in archaeology. A wide range of commodities can be detected in prehistoric ceramic vessels using organic residue analyses e.g. terrestrial animal fats, such as carcass and dairy fats, aquatic fats, plant oils and waxes, tree resins and beeswax. A major innovation achieved during this project has been the high precision radiocarbon (14C) dating of individual lipids, particularly animal derived fatty acids that occur commonly pottery.

Such approaches have been applied to the largest scale investigation of organic residues in pottery sherds ever undertaken. Approaching 5,000 individual potsherds excavated from LBK settlements across the entire distribution of this keystone prehistoric culture, which ranges from nearly the Atlantic in the west, via the Baltic in the north, to the Black Sea in the east. In the south, it reaches the rivers Sava and the lower Danube at the 44th degree of northern latitude. Hence, pottery from LBK sites situated in all ecological zones and environmental variants (e.g. lowland and upland sites in Poland) are represented. Recent research has put the start of the LBK in early 6th millennium BC. This early formation stage is only found in historical north-western Transdanubia, covering parts of the modern countries of Hungary, Austria and Slovakia. From here on, an early stage of the LBK expanded to the west, reaching the Rhine river at around 5500 BC, and to the north and northeast, reaching the upper Vistula river in its tributaries at about the same time. The next stage, the so-called “middle” LBK, sees a further expansion to finally cover the whole distribution range shortly after 5300 BC. This is followed by what is termed to be “late” and “latest” LBK, from c. 5150 BC, constituting more regionalised groupings. By 4900 BC even the latest LBK pottery types (sensu stricto) have disappeared from the record. These stages of development are well reflected in pottery decorations, and stylistic development, give us a good indication of chronological position.

Pottery samples targeted during the NeoMilk project comprise all chronological phases of the LBK in the respective regions to investigate chronological trends in animal exploitation. The LBK settlement pottery repertoire comprises surprisingly few forms. Beside some hemispherical cups, bottles and amphora, 80% of all vessels are interpreted as ‘cooking pots’, often decorated. Sherds of all available pottery categories were sampled. By far the majority of all LBK pottery sherds derive from the settlement sites, excavated in their thousands in Europe, and here in particular from the lateral oblong pits accompanying the typical LBK longhouses. Seen as originally dug out to provide clay for the house wall constructions, these had been used as refuse pits during the lifetime of the houses, thereby giving us the opportunity to investigate variation on a house-by-house basis as well as comparing settlements and regions.

The results obtained from ca. 5,000 pottery sherds from more 50 archaeological sites submitted to lipid residue analyses are allowing chronological and geographical trends in animal exploitation in these early farming communities in Central Europe, at the site, regional and continental levels. The findings show highly variable intensities in dairy and non-dairy activities across the whole LBK distribution. It is clear that some early farming communities relied on milk and milk products, others mainly sourced their dietary fats from carcass products, bone marrow or grease. The transformation of some of the milk into cheese is evidenced by the detection of milk residues in specialised containers, perforated with millimetre-sized holes and resembling modern and ethnographic cheese-strainers. The manufacture of cheese would have eased handling of milk products and allowed the nutritional properties of milk to be retained throughout the year.

In summary, the NeoMilk project has integrated state-of-the-art methodologies to provide new qualitative and quantitative evidence for the ways in which the LBK communities managed their animals, and processed and consumed their products, and how this varied temporally and spatially across Europe. The molecular and stable isotope analysis of organic residues in pottery provides access to a pivotal proxy for dairy product processing and consumption. A major strength of the project is the repeated integration of faunal evidence with organic residue evidence to provide a critical link between the animal products processed in vessels and ways in which the animals were managed and butchered. These new finding are being brought together and modelled with new dating, palaeoenvironmental and archaeological information to identify the principal influences on changing patterns of animal management and exploitation throughout entire spatio-temporal range of the LBK. The data synthesis in NeoMilk is testing geographical and ecological models relevant to prehistoric environments to define the controls on dairy husbandry during the LBK. The critical last step involves mapping the emergence of intensive dairying on the distribution of the LP allele in prehistoric populations emerging from on-going aDNA studies.